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Abstract

We present ensmallen, a fast and flexible C++ library for mathematical optimiza-
tion of arbitrary user-supplied functions, which can be applied to many machine
learning problems. Several types of optimizations are supported, including differ-
entiable, separable, constrained, and categorical objective functions. The library
provides many pre-built optimizers (including numerous variants of SGD and
Quasi-Newton optimizers) as well as a flexible framework for implementing new
optimizers and objective functions. Implementation of a new optimizer requires
only one method and a new objective function requires typically one or two C++
functions. This can aid in the quick implementation and prototyping of new ma-
chine learning algorithms. Due to the use of C++ template metaprogramming,
ensmallen is able to support compiler optimizations that provide fast runtimes.
Empirical comparisons show that ensmallen is able to outperform other optimiza-
tion frameworks (like Julia and SciPy), sometimes by large margins. The library is
distributed under the BSD license and is ready for use in production environments.

1 Introduction

Mathematical optimization is the workhorse of virtually all machine learning algorithms. For a
given objective function f(·) (which may have a special structure or constraints), almost all machine
learning problems can be boiled down to the following optimization form:

argmin
x

f(x). (1)

Optimization is often computationally intensive and may correspond to most of the time taken to
train a machine learning model. For instance, the training of deep neural networks is dominated by
the optimization of the model parameters on the data [31]. Even popular machine learning models
such as logistic regression have training times mostly dominated by an optimization procedure [13].

The ubiquity of optimization in machine learning algorithms highlights the need for robust and
flexible implementations of optimization algorithms. We present ensmallen, a C++ optimization
toolkit that contains a wide variety of optimization techniques for many types of objective functions.
Through the use of C++ template metaprogramming [2, 34], ensmallen is able to generate efficient
code that can help with the demanding computational needs of many machine learning algorithms.

Although there are many existing machine learning optimization toolkits, few are able to take explicit
advantage of metaprogramming based code optimizations, and few offer robust support for various
types of objective functions. For instance, deep learning libraries like Caffe [11], PyTorch [24],
and TensorFlow [1] each contain a variety of optimization techniques. However, these techniques



are limited to stochastic gradient descent (SGD) and SGD-like optimizers that operate on small
batches of data points at a time. Other machine learning libraries, such as scikit-learn [25] contain
optimization algorithms but not in a coherent or reusable framework. Many programming languages
have higher-level packages for mathematical optimization. For example, scipy.optimize [12], is
widely used in the Python community, and MATLAB’s function optimization support has been
available and used for many decades. However, these implementations are often unsuitable for
modern machine learning tasks—for instance, computing the full gradient of the objective function
may not be feasible because there are too many data points.

In this paper, we describe the functionality of ensmallen and the types of problems that it can be
applied to. We discuss the mechanisms by which ensmallen is able to provide both computational
efficiency and ease-of-use. We show a few examples that use the library, as well as empirical
performance comparisons with other optimization libraries.

ensmallen is open-source software licensed under the 3-clause BSD license [27], allowing unen-
cumbered use in both open-source and proprietary projects. It is available for download from
https://ensmallen.org. Armadillo [30] is used for efficient linear algebra operations, with
optional interface to GPUs via NVBLAS [23].

2 Types of Objective Functions
ensmallen provides a set of optimizers for optimizing user-defined objective functions. It is also
easy to implement a new optimizer in the ensmallen framework. Overall, our goal is to provide
an easy-to-use library that can solve the problem argminx f(x) for any function f(x) that takes a
vector or matrix input x. In most cases, f(x) will have special structure; one example might be that
f(x) is differentiable. Therefore, the abstraction we have designed for ensmallen can optionally take
advantage of this structure. For example, in addition to f(x), a user can provide an implementation
of f ′(x), which in turn allows first-order gradient-based optimizers to be used. This generally leads
to significant speedups.

There are a number of other properties that ensmallen can use to accelerate computation. These are
listed below:

• arbitrary: no assumptions can be made on f(x)
• differentiable: f(x) has a computable gradient f ′(x)
• separable: f(x) is a sum of individual components: f(x) =

∑
i fi(x)

• categorical: x contains elements that can only take discrete values
• sparse: the gradient f ′(x) or f ′i(x) (for a separable function) is sparse
• partially differentiable: the separable gradient f ′i(x) is also separable for a different axis j
• bounded: x is limited in the values that it can take

unified framework

constra
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batches
arbitra

ry functions
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izers

sparse
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ensmallen        
Shogun [33]  -    - -
Vowpal Wabbit [16] - -  - - -  
TensorFlow [1]  -  G# - G# -
Caffe [11]  -  G# G# - -
Keras [4]  -  G# G# - -
scikit-learn [25] G# - G# G# - - -
SciPy [12]   -  - - -
MATLAB [19]   -  - - -
Julia (Optim.jl) [20]  - -  - - -

Table 1: Feature comparison:  = provides feature, G#= partially provides feature, - = does not provide feature.
unified framework indicates if there is some kind of generic/unified optimization framework; constraints and
batches indicate support for constrained problems and batches; arbitrary functions means arbitrary objective
functions are easily implemented; arbitrary optimizers means arbitrary optimizers are easily implemented;
sparse gradient indicates that the framework can natively take advantage of sparse gradients; and categorical
refers to if support for categorical features exists.
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Due to its straightforward abstraction framework, ensmallen is able to provide a large set of diverse
optimization algorithms for objective functions with these properties. Below is a list of currently
available optimizers:

• SGD variants [29]: Stochastic Gradient Descent (SGD), SGD with Restarts, Parallel SGD (Hogwild!) [22],
Stochastic Coordinate Descent, AdaGrad [6], AdaDelta [35], RMSProp, SMORMS3, Adam [13], AdaMax

• Quasi-Newton variants: Limited-memory BFGS (L-BFGS) [36], incremental Quasi-Newton method [21],
Augmented Lagrangian Method [10]

• Genetic variants: Conventional Neuro-evolution [3], Covariance Matrix Adaptation Evolution Strategy [9]
• Other: Conditional Gradient Descent, Frank-Wolfe algorithm [8], Simulated Annealing [14]

In ensmallen’s framework, if a user wants to optimize a differentiable objective function, they only
need to provide implementations of f(x) and f ′(x), and then they can use any of the gradient-based
optimizers that ensmallen provides. Table 1 contrasts the classes of objective functions that can be
handled by ensmallen and other popular frameworks and libraries.

Not every optimization algorithm provided by ensmallen can be used by every class of objective func-
tion; for instance, a gradient-based optimizer such as L-BFGS cannot operate on a non-differentiable
objective function. Thus, the best the library can attain is to maximize the flexibility available, so that
a user can easily implement a function f(x) and have it work with as many optimizers as possible.

To accomplish the flexibility, ensmallen makes heavy use of C++ template metaprogramming. When
implementing an objective function to be optimized, a user may only need to implement a few
methods; metaprogramming is then automatically used to check that the given functions match
the requirements of the optimizer that is being used. When implementing an optimizer, we can
assume that the given function to be optimized meets the required assumptions of the optimizers,
and encode those requirements as compile-time checks (via static_assert); this can provide much
easier-to-understand error messages than typical compiler output for templated C++ code.

For the most common case of a differentiable f(x), the user only needs to implement two methods:

• double Evaluate(x): given coordinates x, this function returns the value of f(x).
• void Gradient(x, g): given coordinates x and a reference to g, set g = f ′(x).

Alternatively, the user can simply implement a EvaluateWithGradient() function that computes
both f(x) and f ′(x) simultaneously, which is useful in cases where both the objective and gradient
depend on similar computations.

The required API for separable differentiable objective functions (i.e. those that would use an opti-
mizer like SGD) is very similar, except that Evaluate(), Gradient() and EvaluateWithGradient()
should operate only on mini-batches, and utility methods Shuffle() and NumFunctions() must be
added. The same pattern applies for other types of objective functions: only a few methods specific
to class of objective function itself must be implemented and then any optimizer may be used.

3 Example: Learning Linear Regression Models
As an example of usage, consider the linear regression objective function1. Given a datasetX ∈ Rn×d
and associated responses y ∈ Rn, the model of linear regression is to assume that yi = xiθ for each
point and response (xi, yi). To fit this model θ ∈ Rd to the data, we must find

argmin
θ

f(θ) = argmin
θ

∑n

i=1
(yi − xiθ)2 = argmin

θ
‖y −Xθ‖2F . (2)

The objective function f(θ) has the associated gradient

f ′(θ) =
∑n

i=1
−2xi(yi − xiθ) = −2XT (y −Xθ). (3)

We can implement these two functions in a class named LinearRegressionFunction, as shown in
Fig. 1. This is the entire required implementation to optimize the linear regression model with any of
the gradient-based optimizers in ensmallen.

1For simplicity, we ignore the bias term. It can be rederived by taking x∗i = (xi, 1).
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class LinearRegressionFunction {
public:
// Construct the LinearRegressionFunction with the given data
LinearRegressionFunction(arma::mat& X_in, arma::vec& y_in) : X(X_in), y(y_in) {}

// Compute the objective function
double Evaluate(const arma::mat& theta) {

return std::pow(arma::norm(y - X * theta), 2.0);
}
// Compute the gradient and store in 'gradient'
void Gradient(const arma::mat& theta, arma::mat& gradient) {

gradient = -2 * X.t() * (y - X * theta);
}

private:
arma::mat& X; arma::vec& y;

};

Figure 1: Implementation of objective and gradient functions for linear regression, used by optimizers
in ensmallen. The types arma::mat and arma::vec are matrix and vector types from Armadillo [30].

Given the user-defined LinearRegressionFunction class, the code snippet below shows how the
L-BFGS optimizer can be used to find the best parameters θ:

LinearRegressionFunction lrf(X, y); // we assume X and y already hold data
ens::L_BFGS lbfgs; // create L-BFGS optimizer with default parameters

arma::vec theta(X.n_rows, arma::fill::randu); // random uniform initialization
lbfgs.Optimize(lrf, theta); // after this call, theta holds the solution

To use the small-batch SGD-like optimizers provided by ensmallen, only a slight variation on the
signature of Evaluate() and Gradient() would be needed, plus the Shuffle() and NumFunctions()
utility methods.

4 Automatic Metaprogramming for Ease of Use and Efficiency
When optimizing a given function f(x), the computation of the objective function f(x) and its
derivative f ′(x) often involve the computation of identical intermediate results. Consider the linear
regression objective function described in Section 3, f(θ) = ‖y −Xθ‖2F . For this objective function,
the derivative f ′(θ) has a related form of −2XT (y − Xθ). Both the objective function and the
derivative depend on the computation of the vector term (y −Xθ), which can be computationally
expensive to compute if X is a large matrix. Existing optimization frameworks do not have an easy
way to avoid this duplicate computation. In many cases, an optimization algorithm may need the
values of both f(θ) and f ′(θ) for a given θ.

Using template metaprogramming, ensmallen provides an easy (and optional) way for users
to avoid this extra computational overhead. Instead of specifying individual Evaluate() and
Gradient() functions, a user may simply write an EvaluateWithGradient() function that re-
turns both the objective value and the gradient value for an input θ. As an example, for the
LinearRegressionFunction class in Fig. 1, we can replace Evaluate() and Gradient() with
an implementation of EvaluateWithGradient() that computes (y −Xθ) only once:

double EvaluateWithGradient(const arma::mat& theta, arma::mat& gradient) {
const arma::vec v = (y - X * theta); // Cache result
gradient = -2 * X.t() * v; // Store gradient in the provided matrix
return arma::accu(v % v); // Take squared norm of v

}

Template metaprogramming techniques are automatically used to detect which methods exist, and a
wrapper class will use suitable mix-ins in order to provide ‘missing‘ functionality [32]. For instance,
if EvaluateWithGradient() is not provided, a version will be automatically generated that calls both
Gradient() and Evaluate() in turn. Similarly, if Evaluate() or Gradient() does not exist, then
EvaluateWithGradient() is called, and the unnecessary part of the result will be discarded.

The use of template metaprogramming in this manner also allows for compiler optimizations that
would not otherwise be possible (and that are often not possible in other frameworks). Firstly, because
the objective function class itself is a template parameter, the compiler is able to avoid the overhead of
a function pointer dereference, which would not be easily possible when using a language with virtual
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ensmallen scipy Optim.jl samin

default 0.004s 1.069s 0.021s 3.173s
tuned 0.574s 3.122s

Table 2: Runtimes for 100000 iterations of simulated annealing with various frameworks on the
simple Rosenbrock function. Julia code runs do not count compilation time. The tuned row indicates
that the code was manually modified for speed.

inheritance. The compiler is also able to use inlining and any optimizations that may imply, including
removing temporary values and dead code elimination. Further, if ensmallen automatically generates
an Evaluate() or Gradient() method from a user-supplied EvaluateWithGradient() method, the
compiler can in some cases recognize and remove the computation of unnecessary results. For
instance, in an automatically generated Evaluate() method, the computation of the gradient from
EvaluateWithGradient() can be avoided entirely.

Overall, the automatic code generation functionality in ensmallen reduces the requirements for
users when they are implementing their own objective functions to be optimized, and allows users
a way to provide more efficient implementations of their objective functions. This leads to quicker
development, quicker results, and reduces the likelihood of bugs.

At the time of writing, the automatic code generation is implemented for the most commonly-used
cases: full-batch and small-batch Evaluate(), Gradient(), and EvaluateWithGradient(). We aim
to expand this support to other sets of methods for other types of objective functions.

5 Experiments

To demonstrate the benefits of the metaprogramming based code optimizations that ensmallen can
exploit, we compare the performance of ensmallen with several other optimization frameworks,
including some that use automatic differentiation.

For our first experiment, we consider the simple and popular Rosenbrock function [28]: f([x1, x2]) =
100(x2−x21)2+(1−x21). For the optimizer, we use simulated annealing [14], a gradient-free optimizer.
Simulated annealing will call the objective function numerous times; for each simulation we limit the
optimizer to 100k objective evaluations. Since the objective function is straightforward and is called
many times, this can help us understand the overheads of various frameworks.

We compare four frameworks for this task: (i) ensmallen, (ii) scipy.optimize.anneal from SciPy
0.14.1 [12], (iii) simulated annealing implementation in Optim.jl with Julia 1.0.1 [20], (iv) samin
in the optim package for Octave [7]. While another option here might be simulannealbnd() in the
Global Optimization Toolkit for MATLAB, no license was available. We ran our code on a MacBook
Pro i7 2018 with 16GB RAM running macOS 10.14 with clang 1000.10.44.2, Julia version 1.0.1,
Python 2.7.15, and Octave 4.4.1.

Initially, we implemented these functions as simply as possible and ran them without any tuning.
This reflects how a typical user might interact with a given framework. The results are shown in the
first row of Table 2. Only Julia and ensmallen are compiled, and thus are able to avoid the function
pointer dereference and take advantage of inlining and related optimizations.

However, both Python and Octave have routes for acceleration, such as Numba [15], MEX bindings
and JIT compilation. We hand-optimized the Rosenbrock implementation using Numba, which
required significant modification of the underlying anneal.anneal() function. These techniques did
produce some speedup, as shown in the second row of Table 2. For Octave, a MEX binding did not
produce a noticeable difference. We were unable to tune either ensmallen or Optim.jl to get any
speedup, suggesting that novice users will easily be able to write efficient code in these cases.

Next, we consider the linear regression example described in Sec. 3. For this task we use the first-order
L-BFGS optimizer [36]. Using the same four packages, we implement the linear regression objective
and gradient. For ensmallen we implement a version with only EvaluateWithGradient(), denoted
as ensmallen-1. We also implement a version with both Evaluate() and Gradient(): ensmallen-2.
We also use automatic differentiation for Julia via the ForwardDiff.jl [26] package and for Python
via the Autograd [18] package. For GNU Octave we use the bfgsmin() function.
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algorithm d: 100, n: 1k d: 100, n: 10k d: 100, n: 100k d: 1k, n: 100k

ensmallen-1 0.001s 0.009s 0.154s 2.215s
ensmallen-2 0.002s 0.016s 0.182s 2.522s
Optim.jl 0.006s 0.030s 0.337s 4.271s
scipy 0.003s 0.017s 0.202s 2.729s
bfgsmin 0.071s 0.859s 23.220s 2859.81s
ForwardDiff.jl 0.497s 1.159s 4.996s 603.106s
autograd 0.007s 0.026s 0.210s 2.673s

Table 3: Runtimes for the linear regression function on various dataset sizes, with n indicating the number of
samples, and d indicating the dimensionality of each sample. All Julia runs do not count compilation time.

Results for various data sizes are shown in Table 3. For each implementation, L-BFGS was allowed
to run for only 10 iterations and never converged in fewer iterations. The datasets used for training
are highly noisy random data with a slight linear pattern. Note that the exact data is not relevant for
the experiments here, only its size. Runtimes are reported as the average across 10 runs.

The results indicate that ensmallen with EvaluateWithGradient() is the fastest approach. Fur-
thermore, the use of EvaluateWithGradient() yields considerable speedup over the ensmallen-2
implementation with both the objective and gradient implemented separately. In addition, although
the automatic differentiation support makes it easier for users to write their code, we observe that the
output of automatic differentiators is not as efficient, especially with ForwardDiff.jl. We expect
this effect to be more pronounced with increasingly complex objective functions.

Lastly, we demonstrate the easy pluggability in ensmallen for using various optimizers on the same
task. Using a version of LinearRegressionFunction from Sec. 3 adapted for separable differentiable
optimizers, we run six optimizers with default parameters in just 8 lines of code, as shown in Fig. 2(a).
Applying these optimizers to the YearPredictionMSD dataset from the UCI repository [17] yields
the learning curves shown in Fig. 2(b). Any other optimizer for separable differentiable objective
functions can be dropped into place in the same manner.

6 Conclusion
We have described ensmallen, a flexible C++ library for function optimization that provides an easy
interface for the implementation and optimization of user-defined objective functions. Many types
of functions can be optimized, including separable and constrained functions. The library provides
many pre-built optimizers (including numerous variants of SGD and Quasi-Newton optimizers). The
library internally exploits template metaprogramming to maximise opportunities for efficiency gains,
as well as to make the implementation of objective functions easier by automatically generating
missing methods.

We aim to expand the library with further optimization techniques as the need arises. Since ensmallen
is open source, external contributions to the codebase are welcome. For more information on the
library, see the website and documentation at https://ensmallen.org. The library is already in
use for function optimization in the mlpack machine learning toolkit [5].

Acknowledgements. We would like to thank the many contributors to ensmallen, who are listed on
the associated website.

// X and y are data
LinearRegressionFunction lrf(X, y);

using namespace ens;
StandardSGD<>().Optimize(lrf, sgdModel);
Adam().Optimize(lrf, adamModel);
AdaGrad().Optimize(lrf, adagradModel);
SMORMS3().Optimize(lrf, smorms3Model);
SPALeRASGD().Optimize(lrf, spaleraModel);
RMSProp().Optimize(lrf, rmspropModel);

(a) Code.
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(b) Learning curves.

Figure 2: Example usage of six ensmallen optimizers to optimize a linear regression function on the
YearPredictionMSD dataset [17] for 5 epochs of training. The optimizers can be tuned for better performance.
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